Duality and Intertwining for Discrete Markov Kernels: a Relation and Examples
نویسندگان
چکیده
We work out some relations between duality and intertwining in the context of discrete Markov chains, fixing up the background of previous relations first established for birth and death chains and their Siegmund duals. In view of the results, the monotone properties resulting from the Siegmund dual of birth and death chains are revisited in some detail, with emphasis on the non neutral Moran model. We also introduce an ultrametric type dual extending the Siegmund kernel. Finally we discuss the sharp dual, following closely the Diaconis-Fill study. Running title: Duality and Intertwining.
منابع مشابه
Duality and Intertwining for discrete Markov kernels: relations and examples
We work out some relations between duality and intertwining in the context of discrete Markov chains, fixing up the background of previous relations first established for birth and death chains and their Siegmund duals. In view of the results, the monotone properties resulting from the Siegmund dual of birth and death chains are revisited in some detail, with emphasis on the non neutral Moran m...
متن کاملCaractérisation des paramètres d'Arthur, une remarque
In The endoscopic classification of representations, J. Arthur has proved the Langlands' classification for discrete series of p-adic classical groups. This uses endoscopy and twisted endoscopy. In this very short note, we remark that the normalization $rmgrave{a}$ la Langlands-Shahidi of the intertwining operators, allows to avoid endoscopy. This is based on the intertwini...
متن کاملTHE DUALITY OF THE L?-REPRESENTATION ALGEBRA ?(S ) OF A FOUNDATION SEMIGROUP S AND FUNCTION ALGEBRAS
In the present paper for a large family of topological semigroups, namely foundation semigroups, for which topological groups and discrete semigroups are elementary examples, it is shown that ?(S) is the dual of a function algebra.
متن کاملOn the notion(s) of duality for Markov processes
Abstract: We provide a systematic study of the notion of duality of Markov processes with respect to a function. We discuss the relation of this notion with duality with respect to a measure as studied in Markov process theory and potential theory and give functional analytic results including existence and uniqueness criteria and a comparison of the spectra of dual semi-groups. The analytic fr...
متن کاملExistence of Optimal Policies for Semi-Markov Decision Processes Using Duality for Infinite Linear Programming
Semi-Markov decision processes on Borel spaces with deterministic kernels have many practical applications, particularly in inventory theory. Most of the results from general semi-Markov decision processes do not carry over to a deterministic kernel since such a kernel does not provide “smoothness.” We develop infinite dimensional linear programming theory for a general stochastic semi-Markov d...
متن کامل